
Concept Document

THE ROTATING ARKANOID

INTRODUCTION

“The Rotating Arkanoid” is a reaction and intuition trainer. It is also a modern

implementation of old arcade game mechanic, which first appeared on the game

machines in 1980s. It has a more futuristic and meditational space visual style than its

predecessor, while in the same time features the time-tested gameplay mechanics.

However, the block moving is implemented in the more complex way than the original

one to make it harder for the player to hit the desired block.

UNIQUE SELLING POINT

This game allows you to train your reaction, intuition and dimension-oriented

thinking and stimulates the competition between several players.

GAMEPLAY

You operate the paddle, which is used to reflect ball in order to prevent it from

falling down from the screen (if the ball touches the laser beam – it gets destroyed).

The main target is to destroy all blocks that are located in lines on the game field.

There are several types of blocks, each of which features its own visual appearance,

the durability and the score reward. Blocks are changing their formation in a short

period of time, so you need to plan the trajectory of the ball carefully. Moreover, after

completing the level, the next one will be rotated by 90 degrees to make the game

more excitable and train your dimension-oriented thinking.

GENRE AND AUDIENCE

Arcade-styled trainer for the whole family.

SCREENSHOTS

MAIN FEATURES OF THE PROJECT

 The game field is rotated by 90 degrees each time you complete a level

 Leaderboards mechanic to bring more competition to the game and make

the gameplay more excitable

 The whole-new block movement scripting (blocks group in the center to

prevent the ball from passing through their lines)

 Block movement is implemented via Observer programming pattern.

Game Feature Code Implementation Comment

Game field
rotation

public class Playerscript : MonoBehaviour
{
void Start()
 {
 loadTime = PlayerPrefs.GetInt("loadTime", 0);
 // Set the camera position
 // Horizontal orientation of game field -
either 0 or 180 degrees
 if (loadTime % 2 == 0)
 {
 Camera.main.transform.position = new
Vector3(cameraX, cameraY, cameraHorizontalZ);
 Camera.main.orthographicSize =
HorizontalOrthographic;
 }
 // Vertical one - 90 or 270 degrees
 else
 {
 Camera.main.transform.position = new
Vector3(cameraX, cameraY, cameraVerticalZ);
 Camera.main.orthographicSize =
VerticalOrthographic;
 }
 if (loadTime == 0)
 {
 playerPoints = 0;
 }
 else
 {
 // Rotate the game field by the needed
amount of times
 for (int i = 0; i < loadTime; i++)
 {
 Camera.main.transform.eulerAngles =
new Vector3(0, 0, 90f);
 }
 }
 }
}

Used to
rotate the
player’s view
by rotating
camera to
simulate the
game field
rotation to
achieve
better
performance

The Observer
pattern
implementation

interface IObserver
{
 void update();
}

interface ISubject
{
 void Subscribe(GameObject go);
 void Unsubscribe(GameObject go);
 void Notify();
}

Used to issue
movement
commands to
blocks

Game Feature Code Implementation Comment

Issuing the
movement
command once
in 3 seconds

public class Timer : ISubject
{
 private List<GameObject> subs = new
List<GameObject>();
 private int secondsToStop;
 private float t;

 public Timer()
 {
 secondsToStop = 3;
 GameObject[] gos =
GameObject.FindGameObjectsWithTag("Block");
//returns GameObject[]
 foreach (GameObject g in gos)
 {
 Subscribe(g);
 }
 t = Time.time;
 }

 public void CheckTime()
 {
 if ((Time.time - t) >= secondsToStop)
 {
 t = Time.time;
 Notify();
 }
 }
 public void Subscribe(GameObject go)
 {
 subs.Add(go);
 }

 public void Unsubscribe(GameObject go)
 {
 subs.Remove(go);
 }

 public void Notify()
 {
 foreach (GameObject s in subs)
 {
 MonoBehaviour[] list =
s.GetComponents<MonoBehaviour>();
 foreach (MonoBehaviour Mb in list)
 {
 if (Mb is IObserver)
 {
 IObserver sh = (IObserver)Mb;
 sh.update();
 }
 }
 }
 }
}
public class timerScript : MonoBehaviour
{

 public Timer Timer;
 // Use this for initialization
 void Start()
 {
 Timer = new Timer();
 }

 // Update is called once per frame

The Timer
object is a
time
controller
that acts as
the Subject in
Observer
pattern to
send the
commands to
the blocks

Game Feature Code Implementation Comment
 void Update()
 {
 Timer.CheckTime();
 }

 void BlockDestroyed(GameObject go)
 {
 Timer.Unsubscribe(go);
 }
}

Managing the
received
command by
the block

public class BlockScript : MonoBehaviour, IObserver
{

 public int hitsToKill;
 public int points;
 private int numberOfHits;
 public Vector3 pointB;
 private Vector3 pointA;
 private Vector3 pos;
 private bool moved;

 public void update()
 {
 if (!moved)
 {
 MoveFunction(new Vector3(0.0f,
transform.position.y - 0.5f, 0.0f));
 moved = true;
 }
 else
 {
 MoveFunction(pointA);
 moved = false;
 }
 }

 // Use this for initialization
 void Start()
 {
 numberOfHits = 0;
 pointA = gameObject.transform.position;
 pos = gameObject.transform.position;
 moved = false;
 }

 void MoveFunction(Vector3 endpos)
 {
 transform.position =
Vector3.MoveTowards(transform.position, endpos,
0.5f);
 }

Each block is
subscribed to
the Timer
object and
starts
changing its
position after
receiving the
command
from Timer

